# Book 10 Proposition 32

Εὑρεῖν δύο μέσας δυνάμει μόνον συμμέτρους μέσον περιεχούσας, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ. Ἐκκείσθωσαν τρεῖς ῥηταὶ δυνάμει μόνον σύμμετροι αἱ Α, Β, Γ, ὥστε τὴν Α τῆς Γ μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ τῷ μὲν ὑπὸ τῶν Α, Β ἴσον ἔστω τὸ ἀπὸ τῆς Δ. μέσον ἄρα τὸ ἀπὸ τῆς Δ: καὶ ἡ Δ ἄρα μέση ἐστίν. τῷ δὲ ὑπὸ τῶν Β, Γ ἴσον ἔστω τὸ ὑπὸ τῶν Δ, Ε. καὶ ἐπεί ἐστιν ὡς τὸ ὑπὸ τῶν Α, Β πρὸς τὸ ὑπὸ τῶν Β, Γ, οὕτως ἡ Α πρὸς τὴν Γ, ἀλλὰ τῷ μὲν ὑπὸ τῶν Α, Β ἴσον ἐστὶ τὸ ἀπὸ τῆς Δ, τῷ δὲ ὑπὸ τῶν Β, Γ ἴσον τὸ ὑπὸ τῶν Δ, Ε, ἔστιν ἄρα ὡς ἡ Α πρὸς τὴν Γ, οὕτως τὸ ἀπὸ τῆς Δ πρὸς τὸ ὑπὸ τῶν Δ, Ε. ὡς δὲ τὸ ἀπὸ τῆς Δ πρὸς τὸ ὑπὸ τῶν Δ, Ε, οὕτως ἡ Δ πρὸς τὴν Ε: καὶ ὡς ἄρα ἡ Α πρὸς τὴν Γ, οὕτως ἡ Δ πρὸς τὴν Ε: σύμμετρος δὲ ἡ Α τῇ Γ δυνάμει [μόνον]. σύμμετρος ἄρα καὶ ἡ Δ τῇ Ε δυνάμει μόνον. μέση δὲ ἡ Δ: μέση ἄρα καὶ ἡ Ε. καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς τὴν Γ, ἡ Δ πρὸς τὴν Ε, ἡ δὲ Α τῆς Γ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ ἡ Δ ἄρα τῆς Ε μεῖζον δυνήσεται τῷ ἀπὸ συμμέτρου ἑαυτῇ. λέγω δή, ὅτι καὶ μέσον ἐστὶ τὸ ὑπὸ τῶν Δ, Ε. ἐπεὶ γὰρ ἴσον ἐστὶ τὸ ὑπὸ τῶν Β, Γ τῷ ὑπὸ τῶν Δ, Ε, μέσον δὲ τὸ ὑπὸ τῶν Β, Γ [αἱ γὰρ Β, Γ ῥηταί εἰσι δυνάμει μόνον σύμμετροι], μέσον ἄρα καὶ τὸ ὑπὸ τῶν Δ, Ε. Εὕρηνται ἄρα δύο μέσαι δυνάμει μόνον σύμμετροι αἱ Δ, Ε μέσον περιέχουσαι, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ. Ὁμοίως δὴ πάλιν δειχθήσεται καὶ τῷ ἀπὸ ἀσυμμέτρου, ὅταν ἡ Α τῆς Γ μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ.

Λῆμμα. Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν Α, καὶ ἤχθω κάθετος ἡ ΑΔ: λέγω, ὅτι τὸ μὲν ὑπὸ τῶν ΓΒΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΒΑ, τὸ δὲ ὑπὸ τῶν ΒΓΔ ἴσον τῷ ἀπὸ τῆς ΓΑ, καὶ τὸ ὑπὸ τῶν ΒΔ, ΔΓ ἴσον τῷ ἀπὸ τῆς ΑΔ, καὶ ἔτι τὸ ὑπὸ τῶν ΒΓ, ΑΔ ἴσον [ἐστὶ] τῷ ὑπὸ τῶν ΒΑ, ΑΓ. Καὶ πρῶτον, ὅτι τὸ ὑπὸ τῶν ΓΒΔ ἴσον [ἐστὶ] τῷ ἀπὸ τῆς ΒΑ. Ἐπεὶ γὰρ ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἦκται ἡ ΑΔ, τὰ ΑΒΔ, ΑΔΓ ἄρα τρίγωνα ὅμοιά ἐστι τῷ τε ὅλῳ τῷ ΑΒΓ καὶ ἀλλήλοις. καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΑΒΔ τριγώνῳ, ἔστιν ἄρα ὡς ἡ ΓΒ πρὸς τὴν ΒΑ, οὕτως ἡ ΒΑ πρὸς τὴν ΒΔ: τὸ ἄρα ὑπὸ τῶν ΓΒΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΒ. Διὰ τὰ αὐτὰ δὴ καὶ τὸ ὑπὸ τῶν ΒΓΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΓ. Καὶ ἐπεί, ἐὰν ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἀχθῇ, ἡ ἀχθεῖσα τῶν τῆς βάσεως τμημάτων μέση ἀνάλογόν ἐστιν, ἔστιν ἄρα ὡς ἡ ΒΔ πρὸς τὴν ΔΑ, οὕτως ἡ ΑΔ πρὸς τὴν ΔΓ: τὸ ἄρα ὑπὸ τῶν ΒΔ, ΔΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΑ. Λέγω, ὅτι καὶ τὸ ὑπὸ τῶν ΒΓ, ΑΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΒΑ, ΑΓ. ἐπεὶ γάρ, ὡς ἔφαμεν, ὅμοιόν ἐστι τὸ ΑΒΓ τῷ ΑΒΔ, ἔστιν ἄρα ὡς ἡ ΒΓ πρὸς τὴν ΓΑ, οὕτως ἡ ΒΑ πρὸς τὴν ΑΔ. [ἐὰν δὲ τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ τῶν ἄκρων ἴσον ἐστὶ τῷ ὑπὸ τῶν μέσων.] τὸ ἄρα ὑπὸ τῶν ΒΓ, ΑΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΒΑ, ΑΓ: ὅπερ ἔδει δεῖξαι.

To find two medial straight lines commensurable in square only, containing a medial rectangle, and such that the square on the greater is greater than the square on the less by the square on a straight line commensurable with the greater. Let there be set out three rational straight lines A, B, C commensurable in square only, and such that the square on A is greater than the square on C by the square on a straight line commensurable with A, [X. 29] and let the square on D be equal to the rectangle A, B. Therefore the square on D is medial; therefore D is also medial. [X. 21] Let the rectangle D, E be equal to the rectangle B, C. Then since, as the rectangle A, B is to the rectangle B, C, so is A to C; while the square on D is equal to the rectangle A, B, and the rectangle D, E is equal to the rectangle B, C, therefore, as A is to C, so is the square on D to the rectangle D, E. But, as the square on D is to the rectangle D, E, so is D to E; therefore also, as A is to C, so is D to E. But A is commensurable with C in square only; therefore D is also commensurable with E in square only. [X. 11] But D is medial; therefore E is also medial. [X. 23, addition] And, since, as A is to C, so is D to E, while the square on A is greater than the square on C by the square on a straight line commensurable with A, therefore also the square on D will be greater than the square on E by the square on a straight line commensurable with D.[X. 14] I say next that the rectangle D, E is also medial. For, since the rectangle B, C is equal to the rectangle D, E, while the rectangle B, C is medial, [X. 21] therefore the rectangle D, E is also medial. Therefore two medial straight lines D, E, commensurable in square only, and containing a medial rectangle, have been found such that the square on the greater is greater than the square on the less by the square on a straight line commensurable with the greater. Similarly again it can be proved that the square on D is greater than the square on E by the square on a straight line incommensurable with D, when the square on A is greater than the square on C by the square on a straight line incommensurable with A. [X. 30]

Lemma. Let ABC be a right-angled triangle having the angle A right, and let the perpendicular AD be drawn; I say that the rectangle CB, BD is equal to the square on BA, the rectangle BC, CD equal to the square on CA, the rectangle BD, DC equal to the square on AD, and, further, the rectangle BC, AD equal to the rectangle BA, AC. And first that the rectangle CB, BD is equal to the square on BA. For, since in a right-angled triangle AD has been drawn from the right angle perpendicular to the base, therefore the triangles ABD, ADC are similar both to the whole ABC and to one another. [VI. 8] And since the triangle ABC is similar to the triangle ABD, therefore, as CB is to BA, so is BA to BD; [VI. 4] therefore the rectangle CB, BD is equal to the square on AB. [VI. 17] For the same reason the rectangle BC, CD is also equal to the square on AC. And since, if in a right-angled triangle a perpendicular be drawn from the right angle to the base, the perpendicular so drawn is a mean proportional between the segments of the base, [VI. 8, Por.] therefore, as BD is to DA, so is AD to DC; therefore the rectangle BD, DC is equal to the square on AD. [VI. 17] I say that the rectangle BC, AD is also equal to the rectangle BA, AC. For since, as we said, ABC is similar to ABD, therefore, as BC is to CA, so is BA to AD. [VI. 4]