# Book 9 Proposition 19

Τριῶν ἀριθμῶν δοθέντων ἐπισκέψασθαι, πότε δυνατόν ἐστιν αὐτοῖς τέταρτον ἀνάλογον προσευρεῖν. Ἔστωσαν οἱ δοθέντες τρεῖς ἀριθμοὶ οἱ Α, Β, Γ, καὶ δέον ἔστω ἐπισκέψασθαι, πότε δυνατόν ἐστιν αὐτοῖς τέταρτον ἀνάλογον προσευρεῖν. Ἤτοι οὖν οὔκ εἰσιν ἑξῆς ἀνάλογον, καὶ οἱ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους εἰσίν, ἢ ἑξῆς εἰσιν ἀνάλογον, καὶ οἱ ἄκροι αὐτῶν οὔκ εἰσι πρῶτοι πρὸς ἀλλήλους, ἢ οὔτε ἑξῆς εἰσιν ἀνάλογον, οὔτε οἱ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους εἰσίν, ἢ καὶ ἑξῆς εἰσιν ἀνάλογον, καὶ οἱ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους εἰσίν. Εἰ μὲν οὖν οἱ Α, Β, Γ ἑξῆς εἰσιν ἀνάλογον, καὶ οἱ ἄκροι αὐτῶν οἱ Α, Γ πρῶτοι πρὸς ἀλλήλους εἰσίν, δέδεικται, ὅτι ἀδύνατόν ἐστιν αὐτοῖς τέταρτον ἀνάλογον προσευρεῖν ἀριθμόν. μὴ ἔστωσαν δὴ οἱ Α, Β, Γ ἑξῆς ἀνάλογον τῶν ἄκρων πάλιν ὄντων πρώτων πρὸς ἀλλήλους. λέγω, ὅτι καὶ οὕτως ἀδύνατόν ἐστιν αὐτοῖς τέταρτον ἀνάλογον προσευρεῖν. εἰ γὰρ δυνατόν, προσευρήσθω ὁ Δ, ὥστε εἶναι ὡς τὸν Α πρὸς τὸν Β, τὸν Γ πρὸς τὸν Δ, καὶ γεγονέτω ὡς ὁ Β πρὸς τὸν Γ, ὁ Δ πρὸς τὸν Ε. καὶ ἐπεί ἐστιν ὡς μὲν ὁ Α πρὸς τὸν Β, ὁ Γ πρὸς τὸν Δ, ὡς δὲ ὁ Β πρὸς τὸν Γ, ὁ Δ πρὸς τὸν Ε, δι' ἴσου ἄρα ὡς ὁ Α πρὸς τὸν Γ, ὁ Γ πρὸς τὸν Ε. οἱ δὲ Α, Γ πρῶτοι, οἱ δὲ πρῶτοι καὶ ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ὅ τε ἡγούμενος τὸν ἡγούμενον καὶ ὁ ἑπόμενος τὸν ἑπόμενον. μετρεῖ ἄρα ὁ Α τὸν Γ ὡς ἡγούμενος ἡγούμενον. μετρεῖ δὲ καὶ ἑαυτόν: ὁ Α ἄρα τοὺς Α, Γ μετρεῖ πρώτους ὄντας πρὸς ἀλλήλους: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τοῖς Α, Β, Γ δυνατόν ἐστι τέταρτον ἀνάλογον προσευρεῖν. Ἀλλὰ δὴ πάλιν ἔστωσαν οἱ Α, Β, Γ ἑξῆς ἀνάλογον, οἱ δὲ Α, Γ μὴ ἔστωσαν πρῶτοι πρὸς ἀλλήλους. λέγω, ὅτι δυνατόν ἐστιν αὐτοῖς τέταρτον ἀνάλογον προσευρεῖν. ὁ γὰρ Β τὸν Γ πολλαπλασιάσας τὸν Δ ποιείτω: ὁ Α ἄρα τὸν Δ ἤτοι μετρεῖ ἢ οὐ μετρεῖ. μετρείτω αὐτὸν πρότερον κατὰ τὸν Ε: ὁ Α ἄρα τὸν Ε πολλαπλασιάσας τὸν Δ πεποίηκεν. ἀλλὰ μὴν καὶ ὁ Β τὸν Γ πολλαπλασιάσας τὸν Δ πεποίηκεν: ὁ ἄρα ἐκ τῶν Α, Ε ἴσος ἐστὶ τῷ ἐκ τῶν Β, Γ. ἀνάλογον ἄρα [ ἐστὶν ] ὡς ὁ Α πρὸς τὸν Β, ὁ Γ πρὸς τὸν Ε: τοῖς Α, Β, Γ ἄρα τέταρτος ἀνάλογον προσηύρηται ὁ Ε. Ἀλλὰ δὴ μὴ μετρείτω ὁ Α τὸν Δ: λέγω, ὅτι ἀδύνατόν ἐστι τοῖς Α, Β, Γ τέταρτον ἀνάλογον προσευρεῖν ἀριθμόν. εἰ γὰρ δυνατόν, προσευρήσθω ὁ Ε: ὁ ἄρα ἐκ τῶν Α, Ε ἴσος ἐστὶ τῷ ἐκ τῶν Β, Γ. ἀλλὰ ὁ ἐκ τῶν Β, Γ ἐστιν ὁ Δ: καὶ ὁ ἐκ τῶν Α, Ε ἄρα ἴσος ἐστὶ τῷ Δ. ὁ Α ἄρα τὸν Ε πολλαπλασιάσας τὸν Δ πεποίηκεν: ὁ Α ἄρα τὸν Δ μετρεῖ κατὰ τὸν Ε: ὥστε μετρεῖ ὁ Α τὸν Δ. ἀλλὰ καὶ οὐ μετρεῖ: ὅπερ ἄτοπον. οὐκ ἄρα δυνατόν ἐστι τοῖς Α, Β, Γ τέταρτον ἀνάλογον προσευρεῖν ἀριθμόν, ὅταν ὁ Α τὸν Δ μὴ μετρῇ. ἀλλὰ δὴ οἱ Α, Β, Γ μήτε ἑξῆς ἔστωσαν ἀνάλογον μήτε οἱ ἄκροι πρῶτοι πρὸς ἀλλήλους. καὶ ὁ Β τὸν Γ πολλαπλασιάσας τὸν Δ ποιείτω. ὁμοίως δὴ δειχθήσεται, ὅτι εἰ μὲν μετρεῖ ὁ Α τὸν Δ, δυνατόν ἐστιν αὐτοῖς ἀνάλογον προσευρεῖν, εἰ δὲ οὐ μετρεῖ, ἀδύνατον: ὅπερ ἔδει δεῖξαι.

Given three numbers, to investigate when it is possible to find a fourth proportional to them. Let A, B, C be the given three numbers, and let it be required to investigate when it is possible to find a fourth proportional to them. Now either they are not in continued proportion, and the extremes of them are prime to one another; or they are in continued proportion, and the extremes of them are not prime to one another; or they are not in continued proportion, nor are the extremes of them prime to one another; or they are in continued proportion, and the extremes of them are prime to one another. If then A, B, C are in continued proportion, and the extremes of them A, C are prime to one another, it has been proved that it is impossible to find a fourth proportional number to them. [IX. 17] †Next, let A, B, C not be in continued proportion, the extremes being again prime to one another; I say that in this case also it is impossible to find a fourth proportional to them. For, if possible, let D have been found, so that, as A is to B, so is C to D, and let it be contrived that, as B is to C, so is D to E. Now, since, as A is to B, so is C to D, and, as B is to C, so is D to E, therefore, ex aequali, as A is to C, so is C to E. [VII. 14] But A, C are prime, primes are also least, [VII. 21] and the least numbers measure those which have the same ratio, the antecedent the antecedent and the consequent the consequent. [VII. 20] Therefore A measures C as antecedent antecedent. But it also measures itself; therefore A measures A, C which are prime to one another: which is impossible. Therefore it is not possible to find a fourth proportional to A, B, C.† Next, let A, B, C be again in continued proportion, but let A, C not be prime to one another. I say that it is possible to find a fourth proportional to them. For let B by multiplying C make D; therefore A either measures D or does not measure it. First, let it measure it according to E; therefore A by multiplying E has made D. But, further, B has also by multiplying C made D; therefore the product of A, E is equal to the product of B, C; therefore, proportionally, as A is to B, so is C to E; [VII. 19] therefore E has been found a fourth proportional to A, B, C. Next, let A not measure D; I say that it is impossible to find a fourth proportional number to A, B, C. For, if possible, let E have been found; therefore the product of A, E is equal to the product of B, C. [VII. 19] But the product of B, C is D; therefore the product of A, E is also equal to D. Therefore A by multiplying E has made D; therefore A measures D according to E, so that A measures D. But it also does not measure it: which is absurd. Therefore it is not possible to find a fourth proportional number to A, B, C when A does not measure D. Next, let A, B, C not be in continued proportion, nor the extremes prime to one another. And let B by multiplying C make D.